BUSCANDO «LA PARTÍCULA DIOS»

El pasado 10 de Septiembre fue puesto en marcha con un gran éxito el Gran Colisionador de Hadrones (LHC). Su objetivo: hallar el bosón de Higgs (apodado «la partícula Dios» por el premio Nobel Sheldon Glashow), una partícula elemental hipotética masiva cuya existencia es predicha por el modelo estándar de la física de partículas. Es la única partícula del modelo estándar que no ha sido observada hasta el momento, pero desempeña un rol importantísimo en la explicación del origen de la masa de otras partículas elementales, erigiéndose en la última pieza del 'puzzle' subatómico
Los científicos del CERN de Ginebra consiguieron inyectar por primera vez un haz de protones en el túnel circular de 27 kilómetros del LHC, el mayor acelerador de partículas del mundo, en lo que muchos consideran el experimento científico más grande y ambicioso de la Historia.




El campo de Higgs es una forma de energía que impregna todo el espacio y confiere masa a las partículas. Un protón, por ejemplo, no tendría masa si no fuera por el campo de Higgs. Sin ese campo misterioso, todos seríamos livianos como el fotón, y nos moveríamos, como él, a la velocidad de la luz.
Dicho campo fue postulado en 1963 por media docena de físicos, de los que el británico Peter Higgs ni siquiera era el más destacado (de hecho, hay quien prefiere llamarlo "campo de Higgs-Brout- Englert-Guralnik-Hagen-Kibble"). Pero fue Higgs el primero en hablar del "bosón de Higgs". El campo de Higgs y el bosón de Higgs son dos formas de ver el mismo fenómeno. Esta dualidad se deriva de uno de los principios más desconcertantes –pero también mejor establecidos– de la física cuántica (la antiguamente llamada "dualidad onda-corpúsculo"). El caso más familiar es el de la doble naturaleza de la luz, que consiste a la vez en un campo electromagnético y en un chorro de partículas, o fotones.
El modelo estándar de la física subatómica divide las partículas en dos grandes grupos: las que constituyen la materia (fermiones, como los quarks) y las que transmiten las fuerzas (bosones, como el fotón). El propuesto bosón de Higgs, por tanto, sería una partícula, y eso es lo que los físicos esperan observar en el nuevo superacelerador de Ginebra.
Fue el físico teórico norteamericano Steven Weinberg quien encajó los campos de Higgs en el mismo centro neurálgico del modelo estándar de la física de partículas (o más bien creó con ellos el modelo estándar). El trabajo de Weinberg y sus colegas Abdus Salam y Sheldon Glashow tiene que ver con uno de los principales objetivos de la física actual: la unificación entre las fuerzas fundamentales de la naturaleza, es decir, la formulación de una teoría que explique todas esas fuerzas de una sola tacada.

Los grandes avances en la comprensión científica del mundo suelen consistir en unificaciones de ese tipo. La misma física en su conjunto recibió el impulso definitivo cuando Newton desarrolló el concepto de gravedad, que explicaba a la vez la órbita de la Luna, los movimientos de los planetas y el comportamiento de los objetos en tierra firme: una unificación.
La revolución de la energía eléctrica se debe al trabajo de Faraday y Maxwell, que comprendieron que dos fuerzas previamente percibidas como dispares, la electricidad y el magnetismo, eran en realidad dos formas de mirar a una única fuerza: el electromagnetismo. La gravedad y el electromagnetismo se convirtieron en las dos "fuerzas fundamentales" de la naturaleza conocidas a finales del siglo XIX.

Pero la exploración interna de la estructura del átomo reveló pronto otras dos "fuerzas fundamentales" más. Se llaman fuerza nuclear "fuerte" y "débil", y son las que mantienen unido el núcleo atómico y provocan los varios tipos de desintegración radiactiva. En total, cuatro fuerzas a unificar.
Cada una de estas fuerzas se asocia a una partícula mensajera denominada bosón, como vimos antes. La partícula mensajera de la fuerza electromagnética es el fotón. Weinberg y sus colegas se dieron cuenta de que la fuerza nuclear débil podría explicarse mediante una partícula idéntica al fotón en todo excepto en su masa. El fotón no interactúa con el campo de Higgs, y como consecuencia no tiene masa. Pero el nuevo mensajero debía interactuar con el campo de Higgs adquiriendo una masa considerable (unas 90 veces la masa del protón).
Los mensajeros de la fuerza nuclear débil (los bosones W y Z) aparecieron poco después en los aceleradores de partículas, y tenían las propiedades predichas por Weinberg: idénticos al fotón en todo excepto en que tenían cerca de 90 veces la masa del protón.
Weinberg, Salam y Glashow recibieron el premio Nobel en 1979. Su teoría había unificado las fuerzas electromagnética y nuclear débil. El mismo tipo de idea se puede extender a otras partículas y fuerzas fundamentales. El campo de Higgs es por ello un elemento central del modelo estándar de la física de partículas.
Si el bosón de Higgs aparece en el LHC en los próximos años, la última pieza habrá encajado y el modelo estándar habrá recibido el espaldarazo definitivo. En caso contrario, habrá que modificar el modelo en sus fundamentos más básicos.
También hay que comentar que las altas energías producidas por el LHC llevaron a algunas personas a temer que este hubiera podido causar una catástrofe planetaria, mediante la creación de un agujero negro u otros fenómenos. Estos catastrofistas han llegado a presentar dos demandas judiciales contra el acelerador de Ginebra. El grupo de físicos reunidos en el Consejo Asesor de Seguridad del LHC (LHC Safety Assessment Group, o LSAG) ha concluido, sin embargo, que "incluso si el acelerador llegara a producir microagujeros negros –una posibilidad contraria al modelo estándar de la física de partículas–, estos serían "incapaces de agregar materia en torno a ellos de una forma que resultara peligrosa para la Tierra".
Para finalizar, comentar que ni siquiera el santo grial ha sido tan buscado en la historia.

Enlaces:

Buscando la partícula Dios - El País

Buscando la partícula Dios - El Mundo

Buscando la partícula Dios - ABC